Differentiation potential of stem cells from human dental origin - promise for tissue engineering.

نویسندگان

  • K Kadar
  • M Kiraly
  • B Porcsalmy
  • B Molnar
  • G Z Racz
  • J Blazsek
  • K Kallo
  • E L Szabo
  • I Gera
  • G Gerber
  • G Varga
چکیده

Recent studies have revealed the existence of stem cells in various human tissues including dental structures. We aimed to establish primary cell cultures from human dental pulp and periodontal ligament, to identify multipotential adult stem cells in these cultures, and to study the differentiation capacity of these cells to osteogenic and to neuronal fates. Dental pulp and the periodontal ligament were isolated from extracted human wisdom teeth. The extracellular matrix was enzymatically degraded to obtain isolated cells for culturing. Both dental pulp and periodontal ligament derived cultures showed high proliferative capacity and contained a cell population expressing the STRO-1 mesenchymal stem cell marker. Osteogenic induction by pharmacological stimulation resulted in mineralized differentiation as shown by Alizarin red staining in both cultures. When already described standard neurodifferentiation protocols were used, cultures exhibited only transient neurodifferentiation followed by either redifferentiation into a fibroblast-like phenotype or massive cell death. Our new three-step neurodifferentiation protocol consisting of (1) epigenetic reprogramming, then (2) simultaneous PKC/PKA activation, followed by (3) incubation in a neurotrophic medium resulted in robust neurodifferentiation in both pulp and periodontal ligament cultures shown by cell morphology, immunocytochemistry and real time PCR for vimentin and neuron-specific enolase. In conclusion, we report the isolation, culture and characterization of stem cell containing cultures from both human dental pulp and periodontal ligament. Furthermore, our data clearly show that both cultures differentiate into mineralized cells or to a neuronal fate in response to appropriate pharmacological stimuli. Therefore, these cells have high potential to serve as resources for tissue engineering not only for dental or bone reconstruction, but also for neuroregenerative treatments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induction of Chondrogenic Differentiation of Human Adipose-Derived Stem Cells with TGF-β3 in Pellet Culture System

Objective Adult stem cells which are derived from different tissues, with their unique abilities to self-renew and differentiate into various phenotypes have the potential for cell therapy and tissue engineering. Human adipose tissue is an appropriate source of mesenchymal stem cells with wide differentiation potential for tissue engineering research. In this study isolated stem cells from hum...

متن کامل

Isolation and in vitro Characterization of Mesenchymal Stem Cells Derived from the Pulp Tissue of Human Third Molar Tooth

Background: It is still controversial that the stem cells isolated from human dental pulp meets the criteria for mesenchymal stem cells (MSCs). The aim of the present study was to examine whether or not they are MSCs, or are distinct stem cells population residing in tooth pulp. Methods: Adherent fibroblastic cells in the culture of pulp tissue from human third molars were propagated through se...

متن کامل

Review Paper: Embryonic Stem Cell and Osteogenic Differentiation

Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells, including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cell...

متن کامل

Reprogramming by cytosolic extract of human embryonic stem cells improves dopaminergic differentiation potential of human adipose tissue-derived stem cells

The extract of pluripotent stem cells induces dedifferentiation of somatic cells with restricted plasticity. In this study, we used the extract of human embryonic stem cells (hESC) to dedifferentiate adipose tissue-derived stem cells (ADSCs) and examined the impact of this reprogramming event on dopaminergic differentiation of the cells. For this purpose, cytoplasmic extract of ESCs was prepare...

متن کامل

سلول‌های بنیادین پالپ دندان‌های شیری انسان، تاریخچه و انواع روش‌های استخراج سلول

  Background and Aims: In the last decade, several studies have reported the isolation of stem cell population from different dental sources, while their mesenchymal nature is still controversial. The aim of this study was to introduce the isolating methods for stem cells from human dental pulp and to determine their mesenchymal nature before differentiation.   Material and methods: One of the ...

متن کامل

Extract of mouse embryonic stem cells induces the expression of pluripotency genes in human adipose tissue-derived stem cells

Objective(s): In some previous studies, the extract of embryonic carcinoma cells (ECCs) and embryonic stem cells (ESCs) have been used to reprogram somatic cells to more dedifferentiated state. The aim of this study was to investigate the effect of mouse ESCs extract on the expression of some pluripotency markers in human adipose tissue-derived stem cells (ADSCs). Materials and Methods: Human A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of physiology and pharmacology : an official journal of the Polish Physiological Society

دوره 60 Suppl 7  شماره 

صفحات  -

تاریخ انتشار 2009